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TU/e Biomedical Engineering
Goal:
 

• learn the functioning of the human body
• learn mathematical models and computer simulations
• critical analysis of measurement methods
• design of new materials and techniques

3 Master tracks:
 

• Biomedical Imaging and Informatics
• Biomechanics and Tissue Engineering
• Molecular Engineering

Started in Sept. 1997
• 3 yr Bachelor, 2 yr MSc
• 400 students
• 75 staff

/in samenwerking met                Universiteit Maastricht

.



Image analysisImage analysis

The extraction of
the essential information

from all available data
and present this

in optimal format

• Our focus: the design of computer algorithms
that answer questions on images
• Clinical validation



Bev Doolittle: The forest has eyes

The challenge

How do we do it?






Advanced volume visualization; needs
enhancement, segmentation, recognition, validation



Computer Vision techniques:

Enhancement

Motion analysis

Texture analysis

Image matching

Shape analysis

Segmentation

Detection and classification

Colour analysis

Geometric corrections



Biologically inspired computer vision
 → bio-mimicking

Multi-Scale Image 
Analysis

• National MSc/PhD course
• Conference series



The development language: Mathematica

Mathematica is a high level computer algebra environment
by Wolfram Inc. 

• Ideal for student use for algorithm prototyping
• Full symbolic functionality, complete
• Fast numerical  functionality
• A steep learning curve, training < 1 week
• Interpreter, typically very short code
• Integration of code and text in ‘notebook’
• Write mathematics as usual (symbols, operators, Greek)
• Functional programming & pattern matching
• Platform independent
• Version 5 faster than Matlab



“Here is a paper: read it, implement it, and understand it”

Ventricular heart motion:
-Prolate ellipsoid
-Rotation, scale, shear
-Matrix operations - transforms
-Done in 1 day

T. Arts, W. Hunter, A. Douglas, A. Muijtjens, and R. Reneman, "Description of the 
deformation of the left ventricle by a kinematic model", J. Biomechanics, 25(10), 1992.

A. Suinesiaputra, TU/e - BME



TU/e: strong emphasis on
problem-driven projects

Examples BMT student projects :
• 6-week
• 50% time
• 2nd year

• 3-months
• 50% time
• 4th year

• 10-weeks
• 50% time
• 3rd year
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2nd year: 10 groups of 8 students: Image Analysis for Pathology

• Task: Find the deviating cells
• “Invent” the method yourself
• Brainstorm sessions
• Competitive
• Mathematica: first encounter
• Successfully finished in

6 weeks half-time



Method: subtract a polynomial surface
a x + b y + c x y + d x2 + e y2,
gradient descent multivariable coefficient
optimization for minimum entropy (p Log p) of 
the histogram.

Automatic background correction by entropy minimization

J. Sonnemans, TU/e - BME



Atherosclerotic plaque classification from multi-spectral data

1 0 6 7k lu s ters_ eu cl T1 w_ TSE PDw T1 w _ TFE T2 w _ TSE T2 w _ FSE

T1 weighted TFE T1 weighted TSE proton density weighted T2 weighted FSE T2 weighted TSE

• Cluster analysis in 5-dimensional space

J. Wijnen, TU/e - BMT



Examples of student projects with Mathematica:

• Active contours: intervertebral disk design (with TNO Industry)

STL model for automated disk manufacture

E. Bennink, TU/e - BME



Image structure comes at multiple scales.
Scale induces an image hierarchy.

original Gradient (scale 4 pixels)Gradient (scale 1 pixel)

Differential geometry on images



We blur by looking



Scale is embedded in the task: do you want the leaves or the tree?



‘Spurious resolution’: artefact due to the wrong aperture

What is the best aperture?

Aliasing, 
partial volume effect



Regularization is the technique to make data behave well 
when an operator is applied to them. A small variation of the 
input data should lead to small change in the output data. 

Differentiation is a notorious function with 'bad behavior'.
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Some functions that can 
not be differentiated.



• smoothing the data, convolution with some extended 
kernel, like a 'running average filter' or the Gaussian;
• interpolation, by a polynomial (multidimensional) 
function;
• energy minimization, of a cost function under 
constraints
• fitting a function to the data (e.g. splines). The cubic 
splines are named so because they fit to third order;
• graduated convexity [Blake1987];
• deformable templates ('snakes') [McInerney1996];
• thin plates splines [Bookstein1989];
• Tikhonov regularization.



The formal mathematical method to solve the problems of ill-
posed differentiation was given by Laurent Schwartz (1950):

A regular tempered distribution associated with an image is 
defined by the action of a smooth test function on the image.

TL = à
-¥

¥
LHxL fHxL â x

¶i1... in TL = H-1Ln à
-¥

¥
 LHxL ¶i1... in fHxL â x

The derivative is:



Fields Medal 1950 for his work on the 
theory of distributions. 
Schwartz has received a long list of 
prizes, medals and honours in addition to 
the Fields Medal. He received prizes 
from the Paris Academy of Sciences in 
1955, 1964 and 1972. In 1972 he was 
elected a member of the Academy. He 
has been awarded honorary doctorates 
from many universities including 
Humboldt (1960), Brussels (1962), Lund 
(1981), Tel-Aviv (1981), Montreal (1985) 
and Athens (1993).Laurent Schwartz (1915 - ) 



Simple cell sensitivity profiles in V1

Receptive fields measure
spatio-temporal structure

Model:
several orders
Gaussian
derivatives

differential geometry



The front-end measures changes in place and time: derivatives

1st order
(edges_

2nd order
(ridges,
curvature)

3rd order
(T-junctions)

Rotation invariant
T-junction detection:



Mathematics • Smooth test function
Computer vision • Kernel, filter
Biological vision • Receptive field



Gaussian derivative
profiles up to 4th order

Examples

Differentiation becomes
integration: ListConvolve



Deblurring with a multi-scale approach



Can we inverse the diffusion equation?

Blurring is described by
the diffusion equation:

Diffusion of the
intensity over time/scale



Can we inverse the diffusion equation?

We can construct a 
Taylor expansion of the 
scale-space in any 
direction, including the 
negative scale direction. 



LHx, y, s - dsL = L -
¶ L
¶s

 ds +
1
2!

 
¶2 L
¶s2  ds2 -

1
3!

 
¶3 L
¶s3  ds3 + OHdsL4

Taylor expansion ‘downwards’:

The derivatives with respect to s (scale) can be expressed in
spatial derivatives due to the diffusion equation

¶ L
¶t

=
¶2 L
¶x2 +

¶2 L
¶ y2



LHx, y, s - dsL =

L -
ikjj ¶2 L

¶x2 +
¶2 L
¶ y2

y{zz ds +

1
2!

 
ikjj ¶4 L

¶x4 + 2 
¶4 L

¶x2 ¶ L2 +
¶4 L
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y{zz ds2 - OHdsL3
It is well-known that subtraction of the Laplacian 
sharpens the image. It is the first order 
approximation of the deblurring process.



deblur@im_, order_, s_D := ModuleA8expr<, D = ¶x,x# + ¶y,y# &;
expr = Normal@Series@L@x, y, tD, 8t, 0, order<DD .
L_H0,0,l_L@x_, y_, t_D ¦ Nest@D, L@x, y, tD, lD;

expr . LHn_,m_,0L@x, y, t_D ® gD@im, n, m, sDE

Mathematica code:

1
2 H-4 - s2L HgD@im, 0, 2, sD + gD@im, 2, 0, sDL +

1
8 H-4 - s2L2HgD@im, 0, 4, sD + 2 gD@im, 2, 2, sD + gD@im, 4, 0, sDL +

1
48 H-4 - s2L3 HgD@im, 0, 6, sD + 3 gD@im, 2, 4, sD +

3 gD@im, 4, 2, sD + gD@im, 6, 0, sDL

Output:

Replace



order = 16 order = 32

order = 4 order = 8

Deblurring to 4th, 8th,
16th and 32nd order:

There are 560 derivative
terms in the 32nd order
expression! 
(takes 3 minutes)

Use:
• Deconvolution in
microscopy
• Sharpening MPR
• Removing motion blur



Catheter finding in 1/50 dose fluoroscopy with
context-sensitive filters

E. Franken, TU/e - BME



3D Volume Rendering: Shading – Phong illumination

Full illumination 

model    nsspddpdaa VROkCLNOkCOkCC            0

ak dk sk+ + =



Shading – Shadowfeelers

Tooth with shadowwithout shadow



Shape analysis of the infarcted mouse heart

Stephan Majoor, BMT

Edwin Heijman, TUE



Projects successfully build in the MathVisionTools library:

• Image registration by mutual information minimization
• Edge preserving smoothing
• Dense optic flow extraction
• Image recognition by Eigen-images
• Ultrasound multi-scale segmentation
• Vessel enhancement
• Catheter detection in noisy fluoroscopy
• CAD mammography for stellate tumors
• Lung nodule detection
• and many more …

Orig in al scale = 9



Projects successfully built in the MathVisionTools library:

• Image registration by mutual information minimization
• Edge preserving smoothing
• Dense optic flow extraction
• Image recognition by Eigen-images
• Ultrasound multi-scale segmentation
• Vessel enhancement
• Catheter detection in noisy fluoroscopy
• CAD mammography for stellate tumors
• Lung nodule detection
• and many more …



Remote server

• All 9600 TUE students get a laptop (€ 2000,
 50% sponsored)

• Full campus license, on all laptops, home use
• Server with 12 powerful 2.8GHz 2 GB servers
• Accessible from home via VPN
• We slowly expand, next: 64 bit CPU



Conclusions:

• Mathematica  is an ideal environment for algorithm 
prototyping
• It is fast enough for 2D and 3D and 3D-time image analysis
• Seems ‘forgotten’ by many after abandoning it some years 
ago
• Fast development, now faster than Matlab
• In 2.5 years: 35 projects successfully performed
• Full group (MSc, PhD, internships etc.) runs Mathematica
• We invite collaborations on MathVisionTools

1 0 6 7k lu s ters_ eu cl T1 w_ TSE PDw T1 w _ TFE T2 w _ TSE T2 w _ FS E

Lecture Saturday, 11:00



Thank you for your attention



Exploiting our retinal RGB multi-spectral analyzer:

What is best color space?  Which 3 of 5?  Validation of results.

Thijs van Driel
TU/e - BME



Task: Lysosome detection in a macrophage

Wim Engels, UM





slice24 slice21 slice 25 slice18 slice 22 slice21

slice24 slice23 slice 24 slice20 slice 18 slice24

N-Maxima detection:



35 profiles in
a star of
directions are
sampled for
each maximum



MR slice heart coronary

scale

• toppoints

• graph
theory

• EC
project



Edge
focusing



Noisy edge detection: results



Fitting 3D Spherical Harmonics functions

order = 2;
fitfunctions = Flatten@Table@SphericalHarmonicY@l, m, q, fD, 8l, 0, order<, 8m, -l, l, 1<DD
9 1
2 !!!!p , 1

2 ã-ä f $%%%%%%%%%3
2 p

Sin@qD, 1
2 $%%%%%%3

p
Cos@qD, -

1
2 ãä f $%%%%%%%%%3

2 p
Sin@qD, 1

4 ã-2 ä f $%%%%%%%%%15
2 p

Sin@qD2,
1
2 ã-ä f $%%%%%%%%%15

2 p
Cos@qD Sin@qD, 1

4 $%%%%%%5
p

H-1 + 3 Cos@qD2L, -
1
2 ãä f $%%%%%%%%%15

2 p
Cos@qD Sin@qD, 1

4 ã2 ä f $%%%%%%%%%15
2 p

Sin@qD2=

48.5375 + 1.36246 Cos@qD - 0.346201 Cos@qD2 + 0.371463 Cos@fD Sin@qD -

1.34494 Cos@qD Cos@fD Sin@qD - 0.998947 Cos@2 fD Sin@qD2 +
0.162299 Sin@qD Sin@fD + 4.52912 Cos@qD Sin@qD Sin@fD - 1.16299 Sin@qD2 Sin@2 fD



Lysosomes detected
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How can we find a dense
optic flow field from a motion 
sequence in 2D and 3D?

Many approaches are taken:

- gradient based (or differential);
- phase-based (or frequency domain);
- correlation-based (or area);
- feature-point (or sparse data) 
tracking.

A. Multi-scale optic flow



The  Lie  derivative  (denoted  with  the  symbol  LvÓ)  of  a
function FHgL  with  respect  to  a  vectorfield  vÓ  is  defined  as
LvÓ FHgL. The optic flow constraint equation (OFCE) states
that  the  luminance  does  not  change  when  we  take  the
derivative along the vectorfield of the motion:

LvÓ FHgL º 0



LvÓ FHgL = Ñ
ÓÖÖ

F.vÓ
LvÓ r = r Div vÓ + vÓ.Ñ

ÓÖÖ
r = 0

Multi-scale optic flow constraint equation:

For scalar images:

For density images:

The velocity field is unknown, and this is what we want 
to recover from the data. We like to retrieve the 
velocity and its derivatives with respect to x, y, z and t.
 
We insert this unknown velocity field as a truncated 
Taylor series, truncated at first order.



Multi-scale density flow: in each pixel 8 equations of third order and
8 unknowns:



Motion analysis:

Extraction of dense optic flow field, multi-scale technique

MRI left ventricular wall motion,
phase velocity

MRI tagging

A. Suinesiaputra, ter Haar Romeny, MICCAI 2003



Edge preserving smoothing:

E. Meijering, ISI

cerebral
aneurysm
clean-up
for coiling



Matching with 
normalized 
mutual 
information 
maximization



Principal
Component
Analysis



Look
image acquisition

& storage

See
image analysis
computer vision

Decide
visualization

diagnosis



Computer aided diagnosis

Deus Technologies
R2 Technologies

Nodules
Sarcoidosis
Embolisms
…

Microcalcifications
Stellate tumors
Masses
…



Examples
Ÿ Text is mixed with code and graphics.

In[1]:= 234123

Out[1]= 259149551433081146351770988021783955970608441780582372805253261809„
02871561617613798668079351338163918409967279895549091924890333446„
14984624210141436210516217232746250724250378953402460057610397185„
95121349382206455623738236382812103598966119080264058890598814138„
1014085430056382104175172911104

In[2]:= N@p, 100D
Out[2]= 3.1415926535897932384626433832795028841971693993751058209749445923„

07816406286208998628034825342117068



Ÿ Full symbolic and graphics/animations capabilities:

In[3]:= àabSin@xD Exp@-3 xD âx

Out[3]=
1
10 Hã-3 a HCos@aD +3 Sin@aDL - ã-3 b HCos@bD + 3 Sin@bDLL

In[4]:= Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, 2 p<, PlotPoints ® 50D;



à !!!x ArcTan@xD âx

1
6 I-8 !!!x - 2 !!!2 ArcTanA1 - !!!2 !!!xE +2 !!!2 ArcTanA1 + !!!2 !!!xE +

4 x3 2 ArcTan@xD -
!!!2 LogA-1 +

!!!2 !!!x - xE +
!!!2 LogA1 +

!!!2 !!!x +xEM



In[8]:= s = 1;
ListDensityPlotA !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!gD@im, 1, 0, sD2 + gD@im, 0, 1, sD2E;



Show@8ListDensitgyPlot@imD,
ListContourPlot@gD@im, 2, 0, sD + gD@im, 0, 2, sD, Contours ® 80<,
ContourStyle -> RedD<D;


